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ABSTRACT 
 

Up until the 1980s, conventional radar systems consisted primarily of analog 

circuits, which are costly to build and compatible only to a narrow band of operations. 

Modern digital technology offers increasing capabilities at a lower cost making it 

attractive for modern radar application. The Direct Digital Synthesizer (DDS) is one such 

example of digital technology that is now routinely found in newer radar system designs. 

The DDS characteristics that most attract radar-system designers are precision frequency 

tuning, phase offset control, and linear “chirp” capability. 

 

This study discusses the option of incorporating DDS for use in a digital pulsed 

and/or frequency modulated continuous wave (FMCW) radar, and examined the 

necessary adaptations such as up-converting baseband signals from DDS to a radar 

transmission frequency, viable transmit and receive waveforms and the synchronization 

problem relating to synchronizing the many radiating elements that could range from a 

few to possibly thousands. 
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I. INTRODUCTION  

All warfare is based on deception… 

…Secret operations are essential in war; upon them the army relies to 
make its every move… 

Sun Tzu 

A. MOTIVATION 
Aegis has been regarded as the most competent naval warship in the US Navy 

today, known for its exceptional capability to perform a wide range of missions that 

includes providing anti-cruise missile protection for the naval task group, to anti-ballistic 

missile protection for US and its allies. With all great capabilities, the Aegis owes its 

naval superiority, in a large part, to its advanced AN/SPY-1 radar. The computer 

controlled AN/SPY-1 phased array radar brings together different radar functions such as 

search, detect, track, and guidance control all into one single system. Unlike conventional 

radar which is mechanically rotated to cover 360 degrees, the AN/SPY-1 radar has four 

huge fixed arrays to provide the 360 degrees continuous radar coverage as well as 

enhanced tracking capability on multiple tracks. 

The drawback on AN/SPY-1 radar however, is the limitations by its legacy 

microwave plumbing and sources (with its original design dating back to 1960s) which 

confines the placement of the transmit/receive elements of the array. They needed to be 

co-located on a plane, and to get the required coverage there had to be four massive 

planes. This not only uses an enormous amount of the already limited ship’s surface area, 

but also interrupts the smooth facade of the ship structure, which is a critical 

consideration for today’s stealthy ship design. The heavy array faces complicate the 

structural design of the deckhouse, especially if composite materials are being used. 

For a solution to the problem, a paradigm shift in radar system and antenna design 

is essential. Radar designers must find creative means of achieving the required radar 

performance without compromising the ship’s stealthy characteristics. In its plainest 

form, it is a question of how to design the radar around a stealthy ship. 
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B. CONCEPT OF OPPORTUNISTIC ARRAY RADAR 
Instead of letting the radar array dictate the ship’s structure, why not let the ship’s 

structure dictate where the elements of the array can be placed? This revolutionary idea 

could provide the potential of using the entire length and width of a large ship as the 

aperture for the radar that can be used for various purposes such as communication, 

surveillance, guidance and control, and even threat imaging. This idea of having 

integrated array elements in the ship’s hull forming the aperture for the radar has recently 

been referred to as “an aperstructure opportunistic array radar”. 

Figure 1 illustrates the random placement of array elements across a DD(X) like 

platform [1]. The design of such an “opportunistic” phased array radar system that covers 

the entire length of a large ship involves the controlling of potentially many transmit and 

receive (T/R) elements that could range in the hundreds to the thousands. One particular 

application of interest is the ballistic missile defence (BMD). The operating frequency for 

the simulation in Figure 1 is 300 MHz. 

 
Figure 1. Ship model for the array and simulated pattern [a red × denotes an 

element location] (After Ref [1].) 
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With this many T/R elements that are randomly placed across the entire ship’s 

façade, the approach requires a complete paradigm shift from conventional radar system 

design. 

For a start, the T/R modules need to be freed from their present constraint. This 

means replacing the conventional radio frequency (RF) phase shifter, RF numeric 

controlled attenuator and microwave channeling that are bounding T/R elements together. 

This would require a large number of specially designed and integrated components that 

can self-synchronize with other elements and synthesize, modulate and demodulate radar 

waveforms.  

This radical approach demands Direct Digital Synthesis, which is a digital means 

of producing an analog waveform, usually a phase or amplitude modulated sine wave, by 

generating a time-varying signal in digital form and then performing a digital-to-analog 

conversion. Because waveform generations are primarily digital, it does not need 

waveguides as in the conventional analog waveform generators hence alleviating the 

constraint of requiring the antennas to be co-located together or near the waveform 

generators.  

However, to be truly randomly locatable anywhere on the ship’s superstructure, it 

is desirable that the digital T/R elements not be physically connected to the radar’s 

centralized controller in any form, hence further removing the limitations bounded by 

maximum cable length, deck penetration, etc. Without the physical connection, the new 

digital T/R elements would have to be synchronized-and-controlled wirelessly by the 

radar’s main controller that might be over a hundred meters away. Figure 2 depicts the 

concept of how such a wireless digital T/R module that can be connected to the radar’s 

digital beam former and controller via a wireless transmission medium. 

Like the AN/SPY-1 the ultimate desire is for the proposed aperstructure 

opportunistic array radar to be able to perform various radar functions such as search, 

detect, track, and guidance control simultaneously, however for the sake of simplicity, the 

initial research focus will be on the radar’s ability to conduct long range ballistic missile 

defence (BMD) related functions such as search and detect. 
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Figure 2. Block diagram of the proposed digital wireless array architecture. 

 

This demanding concept is stretching today’s technology and could potentially be 

astronomically costly if new technology or special components have to be developed. 

With the rapid technology advancement and cost reduction that can be offered by 

commercial-off-the-shelf (COTS) electronic components, it would be worthwhile to 

explore the use of commercially available digital waveform synthesizers and modulators 

for demonstrating the working concept of the proposed digital transmit and receive 

module, so as to keep costs to a minimum while maintaining high quality radar 

performance. For the purpose of our concept demonstration, it is more economical to 

construct a 2.4 GHz prototype radar versus the actual desired 300 MHz radar which is 

typical for long range BMD radar, since most of the commercially available products are 

optimized for use within this commercial frequency band. The concepts demonstrated 

using 2.4 GHz are directly applicable to other frequency bands. 
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C. DIGITAL TRANSMIT AND RECEIVE MODULE 
The main idea behind the wireless digital T/R module is to replace the 

conventional radio frequency (RF) phase shifter with the digital phase shifting function of 

the direct digital synthesizer (DDS), and to replace conventional RF numeric controlled 

attenuator with the amplitude control function of the DDS.  

In a digital transmit module, the beam forming and the waveform generation are 

combined. With the advancement in DDS technology, high precision of phase, amplitude 

and frequency is achievable with a DDS. However, because of limitations imposed by the 

sampling, present DDS can only produce low frequency signals (< 300 MHz), and 

therefore, it cannot directly produce signals in higher radar frequency bands. 

The proposed wireless digital T/R module is made up of a transmitting and 

receiving module as shown in Figure 3 which is similar to the conventional T/R module. 

However, the adjustment of the amplitude and phase in the digital T/R module is realized 

in the DDS. Therefore, the linearity of the amplitude and phase of the frequency 

upconversion is critical to the generation of the final transmit beam. In other words, the 

amplitude and phase errors of the RF signal introduced from the low frequency signal 

whose amplitude and phase are controlled by the DDS should be as low as possible. That 

is the key difference between the transmit module of the digital T/R module to that of the 

traditional T/R module. 

 

Figure 3. Concept of wireless digital T/R module. 
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In the transmitting state, the DDS produces the required waveform, which is then 

upconverted into the transmitted signal through single-stage frequency upconversion as 

shown in Figure 4. Section B of Chapter II will further describe the upconversion process 

and the required hardware. 

 
Figure 4. DDS/Modulator digital transmit module. (From Ref. [2].) 

 

D. PREVIOUS WORK 
This thesis is a continuation of the design and development of a three-dimensional 

2.4 GHz digital phased array radar, for use in demonstrating the new aperstructure 

opportunistic array radar concept.  

The transmit antenna design was carried out by Naval Postgraduate School (NPS) 

student LCDR Lance C. Esswein, USN [3]. Esswein had designed a phased array 

transmit antenna using COTS components and demonstrated that the genetic algorithm 

program and its pattern builder function would form a radiation beam in agreement with 

the theoretical calculations. The receiver architecture was investigated by another NPS 

student Eng Cher Shin, Ministry of Defense, Singapore [4] using COTS products and 

further researched by Ong Chin Siang, Ministry of Defense, Singapore [5]. 

In [4], the bandwidth characteristics of the Analog Devices AD8346EVAL 

quadrature modulator board were investigated. It was shown that the modulator board is 

not able to provide wide instantaneous bandwidth. Reference [5] proposed a technique of 
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using different types of time-varying phase weights for a linear frequency modulated 

(LFM) signal to improve the phase distortion and increase the operating bandwidth of the 

phased array. A preliminary laboratory setup using COTS components was presented in 

[5] to implement the time-varying phase weights on the transmit side. The COTS 

components include a AD9854EVAL DDS and a AD8346EVAL demodulator board. The 

preliminary results showed that AD8346EVAL was not able to provide a suppression of 

36 dB on the image signal and would need a band pass filter to remove the undesired 

signals. 

 

E. OBJECTIVE OF THIS THESIS 
This thesis focuses mainly on the digital transmit side of the module. The first 

objective was to re-verify the findings in [5] and identify potential means of achieving 36 

dB image suppression. This task is followed by determining the feasible methods of 

generating frequency modulation continuous wave (FMCW) waveforms and pulsed 

waveforms from the proposed digital transmit module. 

Subsequent investigations shall center on modeling the achievable theoretical 

waveforms for the proposed digital transmit module setup and verifying the expected 

waveforms with the actual measured waveforms. 

The secondary objective will focus on exploring the potential means of 

synchronizing multiple DDSs. This is a requirement for synchronizing the potentially 

hundreds of elements of the array that could cover the entire surface of a large ship.  

In addition, a study on the latest DDS technology was conducted to appraise any 

new DDS feature or characteristic that could be exploited to ease or improve the 

implementation of the array elements. 

 

F. THESIS OUTLINE 
Chapter II, Section A describes the design of the proposed digital transmit module 

and presents the general radar waveforms expected of the digital transmit module. 

Section B touches on the adaptation necessary to fulfilling pulsed and FMCW radar 

application. Section C discusses in detail the upconversion technique for synthesizing 
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microwave frequency and the expected results. Section D states the importance of 

synchronizing the many T/R elements and Section E highlights the key synchronizing 

requirements in synchronizing multiple DDS devices. 

Chapter III, Section A discusses the Matlab simulation results with comparison to 

the measured results from the upconversion experiment. Section B presents the method of 

generating radar pulses and the Matlab simulated results for the different pulse width and 

their expected pulse spectrum. Section C compares the two possible ways of 

synchronizing multiple DDSs and recommends the one with the simplest and smallest 

design. 

Chapter IV, Section A provides the general conclusion while Section B 

recommends the next steps for immediate or future follow-ups.  

Appendix A documents all the Matlab codes developed for this thesis and related 

calculations. Appendix B shows the write-up on the market research that was conducted 

to appraise any new DDS feature or characteristic that could be exploited to ease or 

improve the implementation of the array elements. 
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II. CONCEPT AND THEORY FOR THE DIGITAL TRANSMIT 
MODULE 

A. DESIGNING THE DIGITAL TRANSMIT MODULE (FOR THE 
CONSTRUCTION OF THE 2.4 GHZ RADAR) 

1. Synthesizing Microwave Frequencies 
Although DDS technology is advancing rapidly, direct synthesis of ultra-high 

frequency (UHF) and microwave output frequencies is not yet practical or economically 

feasible. At present even a state-of-the-art DDS can only produce signals up to the range 

of 400 MHz. For this reason DDS is routinely being incorporated with a phase-locked 

loop (PLL) or up-converted with a mixer.  

Unfortunately, multiplication using PLLs compromises signal integrity, frequency 

resolution, and agility. Also, up-converting a double sideband (DSB) signal to single 

sideband (SSB) at a higher frequency, using a mixer, may require difficult or impossible 

output filtering as well as a high-quality fixed-frequency local oscillator (LO). Methods 

used to overcome these shortcomings usually result in the need for multiple PLLs or 

mixer/filter/oscillator stages. 

Reference [5] proposed the use of an improved and economical approach to single 

stage upconversion to the frequencies from 800-to-2500 MHz, using Analog Devices’ 

AD9854 Quadrature Complete-DDS and AD8346 Quadrature Modulator as shown in 

Figure 5. The up-converted suppressed-carrier, single sideband signal would have greater 

than 36-dB typical rejection of LO and undesired sideband frequencies over the entire 

frequency range. Moreover, all DDS signal qualities are preserved, while the unwanted 

products of upconversion are minimized with a typical 36-dB rejection. 

For up-converting quadrature signals synthesized by DDS, the block diagram in 

Figure 5 shows how AD9854 output signals would be applied to the AD8346 differential 

“baseband modulation” inputs for SSB upconversion near the LO frequency. This 

upconversion technique will be further discussed in detail in Section C. 
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Figure 5. Quadrature DDS SSB upconversion. (From Ref. [2].) 

 

2. General Waveforms and Impact on Radar Performance 
The AD9854 DDS is capable of synthesizing various waveforms, which include 

triangular and square waves, but when used together with a quadrature modulator in the 

proposed setup as shown in Figure 5, the setup provides only a continuous sine wave type 

signal suitable for just a handful of CW and FMCW related applications. For other radar 

applications such as surveillance radar, it is necessary that the T/R element generates 

pulsed waveforms. 

In this section the various waveforms and their properties are discussed. There are 

numerous options depending on radar requirement and the family of the widely used 

radar waveforms is summarized in Figure 6, each appropriate to a specific group of tasks. 
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Figure 6. A partial listing of the family of radar waveforms. (From Ref. [6].) 

 

On the top row is the continuous wave or CW waveform. These are most 

appropriate for applications where determining velocity is the main concern, where 

Doppler resolution of targets and clutter is critical and determining range is less crucial, 

such as in close-in range systems.  

For applications where range resolution and accuracy are desired, pulsed 

waveform systems may be more appropriate. The pulsed waveforms may be coded or 

uncoded. These can be coded within a pulse (pulse compression) or from pulse to pulse. 

The coherent pulse-train waveform is almost always required for surveillance radars 

where some ranging is desired and high clutter rejection (>35 dB) is necessary. 

Figure 7 illustrates the typical radar waveform structure commonly used in pulsed 

radar. The pulsed systems are typically categorized as low pulse repetition frequency 

(PRF) where range is unambiguous but Doppler may be ambiguous; medium PRF where 

both range and Doppler are likely to be ambiguous; and high PRF where range is 

ambiguous but Doppler is not.  
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Figure 7. Pulse train radar waveform structure. (From Ref. [6].) 

 

For application such as our 2.4 GHz multifunction prototype radar, the radar 

needs to be versatile in generating various CW and pulse typed waveforms that include 

frequency spreading. The frequency spreading includes two aspects: one is to spread the 

operating frequency; the other is to spread operating bandwidth. The operating frequency 

spreading is achieved by up-converting to higher frequency. While, the operating 

bandwidth spreading can be achieved through varying the DDS or LO frequency when 

the operating frequency is being up-converted. 

 

B. ADAPTATION FOR PULSED AND FMCW RADAR APPLICATIONS 
As commented earlier, the output from the setup in Figure 5 would be a CW type 

waveform with its frequency determined by the DDS operating frequency and the LO 



13 

frequency. To satisfy a pulsed requirement or to generate radar pulses, a separate on/off 

switching is required at the RF output to emulate pulsing. Figure 8 shows an adapted 

design of the setup for implementing as pulsed radar. 

 

Figure 8. AD9854 DDS in pulsed radar applications. (After Ref. [2].) 

 

The following paragraphs provide a general description and specification on the 

two key components for the proposed digital transmit module: the Analog Devices 

AD9854 DDS and the AD8346 I/Q modulator. 

 

1. Direct Digital Synthesis (AD9854EVAL) 
DDS is a digital means of producing an analog waveform. Because operations 

within a DDS device are primarily digital, it can offer fast switching between output 

frequencies, fine frequency resolution, and operation over a broad spectrum of 

frequencies. With advances in design and process technology, today’s DDS devices are 

very compact and draw little power. 

The AD9854 digital synthesizer from Analog Devices was investigated to 

determine its suitability for used in the construction of the 2.4 GHz prototype radar. 

Below is a brief description taken from reference [7]. It states: 
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The AD9854 digital synthesizer is a highly integrated device that uses 
advanced DDS technology, coupled with two internal high-speed, high-
performance quadrature D/A converters to form a digitally programmable 
I and Q synthesizer function. Figure 9 shows the functional block diagram 
of the AD9854 DDS and Figure 10 shows the actual board layout. When 
referenced to an accurate clock source, the AD9854 generates highly 
stable, frequency-phase amplitude-programmable sine and cosine outputs. 
The AD9854’s circuit architecture allows the generation of simultaneous 
quadrature output signals at frequencies up to 150 MHz, which can be 
digitally tuned at a rate of up to 100 million new frequencies per second.  

 

Figure 9. AD9854EVAL functional block diagram. (From Ref. [7].) 

 

Figure 10. Picture of DDS AD9854EVAL board. 
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2. Quadrature Modulation (AD8346EVAL) 
One modulation technique that lends itself well to digital processes is called "I/Q 

Modulation" (or “Quadrature Modulation”), where "I" is the in-phase component of the 

waveform, and "Q" represents the quadrature component.  

In its various forms, I/Q modulation is an efficient way to transfer information, 

and it also works well with digital formats. An I/Q modulator can actually create 

amplitude modulation (AM), frequency modulation (FM) and phase modulation (PM). 

When modulating a carrier with a waveform that changes the carrier’s frequency slightly, 

one can treat the modulating signal as a phasor. It has both a real and an imaginary part, 

or alternatively, an in-phase (I) and a quadrature (Q) part. If a receiver is constructed so 

that it locks to the carrier, one can decipher information by reading the I and Q parts of 

the modulating signal.  

For a narrowband signal, the representation for the carrier signal is 

 ( ) ( ) cos[ ( )] ( ) cos( ) ( )sin( )c c cs t A t t t I t t Q t tω ϕ ω ω= + = −  (1) 

where 

( ) ( )cos( ( ))I t A t tϕ= is the in-phase component of s(t), 

( ) ( )sin( ( ))Q t A t tϕ= is the quadrature component of s(t), 

ωc = 2πfc, and fc is the carrier frequency, 

A(t) is the amplitude of s(t) and, 

φ(t) is the phase of s(t) 

The amplitude A(t) and phase φ(t) of s(t) can be found by 

 2 2( ) ( ) ( )A t I t Q t= +  (2) 

and 

 1 ( )( ) tan
( )

Q tt
I t

ϕ − ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3) 

The fundamental building blocks of a digital quadrature modulator are essentially 

the same as those for the analog single-sideband modulator as shown in Figure 11. An 

analog quadrature modulator mixes the message (or baseband radar waveform) with two 
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carriers. Both carriers operate at the same frequency, but are shifted in phase by 90 

degrees relative to one another (hence the “quadrature” term). This simply means that the 

two carriers can be expressed as cos(2πfct) and sin(2πfct). The message, too, is modified 

to consist of two separate signals: the original and a 90 degree phase shifted version of 

the original. The original is mixed with the cosine component of the carrier and the phase 

shifted version is mixed with the sine component of the carrier. These two modifications 

result in the implementation of the single sideband function.  

Section C will describe in detail the quadrature modulation technique involved in 

this particular application experiment. 

 

Figure 11. Single sideband modulation. (From Ref. [8].) 

 

The AD8346 I/Q modulator from Analog Devices was investigated in this thesis 

to determine its suitability for use in the construction of the 2.4 GHz prototype radar. 

Below is a brief description taken from reference [9]. It states: 

The AD8346 is a I/Q modulator for use from 0.8 GHz to 2.5 GHz. Its 
excellent phase accuracy and amplitude balance allow high performance 
direct modulation to RF. Figure 12 shows the functional block diagram of 
the AD8346 modulator. The differential LO input is applied to a 
polyphase network phase splitter that provides accurate phase quadrature 
from 0.8 GHz to 2.5 GHz. Buffer amplifiers are inserted between two 
sections of the phase splitter to improve the signal-to-noise ratio (SNR). 
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The I and Q outputs of the phase splitter drive the LO inputs of two 
Gilbert-cell mixers. Two differential V-to-I converters connected to the 
baseband inputs provide the baseband modulation signals for the mixers. 
The outputs of the two mixers are summed together at an amplifier which 
is designed to drive a 50 Ω load.  

 

Figure 12. AD8346EVAL functional block diagram. (From Ref. [9].) 

 

C. THE PROPOSED UPCONVERSION TECHNIQUE 

1. General Mixing Theory 
An option to upconvert a DDS signal to UHF/microwave frequencies is to 

incorporate the use of a mixer. Upconverting does not significantly increase either the 

spur levels or the phase noise. Furthermore, frequency agility and resolution remain 

unaffected. The largest obstacle to overcome is the presence of the double-sideband 

(DSB) output: fc + fo and fc – fo, and any LO feedthrough that occurs. Figure 13, showing 

a 200-MHz region of spectrum of a suppressed carrier (LO), single-upconversion mixer 

output, demonstrates this problem with upconversion. The upper sideband is labeled 

USB; the lower sideband LSB. 
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Figure 13. DSB output from typical mixer. (After Ref. [1].) 

 

In quadrature upconversion, as shown in Figure 14, two mixers are driven with 

sine and cosine LOs, which are internally derived from an external single-ended high 

quality oscillator. The mixers are fed sine and cosine baseband signals (filtered DDS 

output signals) to be symmetrically up-converted about the fixed LO. The two mixer 

outputs are summed internally to add in-phase components and reject quadrature 

components of the mixer outputs. The end result (without additional filtering) is a 

suppressed-carrier, single side band, voltage output at –10 dBm and 50-ohm impedance, 

at a frequency that is either the sum or difference of the LO and baseband signals. 

USB

LSB

ALIASED IMAGE

dBm 

LO FEEDTHROUGH
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Figure 14. Quadrature upconversion using the AD8346. 

 

2. LO Feedthrough 
In reality however, there will be some remnants of the LO present in the output 

port. This is known as LO feedthrough. LO feedthrough will occur from the LO port to 

output port due to parasitic capacitance, power supply coupling, etc. LO feedthrough that 

is co-located with a carrier or present at the location of an out-of-channel measurement 

will have effects similar to those experienced with baseband carrier images. LO 

feedthrough can be minimized by adjusting I and Q offset, and I/Q quadrature skew. 

 

3. Opposing Sideband 
In addition to the LO feedthrough, there is also a high probability that an 

opposing sideband is present at the output. This is because errors in the I and Q 

quadrature phase relationship are introduced after the signals exit the AD9854 integrated 

chip (IC). This is due to the filters, unequal cable and PCB trace lengths, transformer 

differences, etc. Amplitude inequalities will also contribute to the inadequate suppression 

of the unwanted sideband. 

Phase errors can be minimized by adjusting cable lengths from the AD9854 to the 

AD8346 evaluation board. Amplitude inequalities can be corrected using the AD9854’s 

12-bit, independent sine and cosine (I and Q), digital amplitude multiplier stages. 
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4. Proposed Laboratory Setup 
A quadrature implementation of the SSB upconverter was accomplished by [1] 

using the AD9854 DDS and the AD8346 I/Q modulator evaluation boards. Modifications 

to the AD8346 evaluation board were required to accept the filtered, quadrature, single-

ended signals provided by the AD9854 evaluation board. The output voltage levels also 

needed to be increased to suit the AD8346 input requirements. A diagram of the lab 

hook-up and modifications is seen in Figure 15. Descriptions on the additional 

components as proposed by [1] are as follows: 

1. Add two 1:16 center-tapped impedance-step-up transformers (Mini-circuits 

T16-6T) to convert single-ended quadrature signals to differential signals and 

to provide a 1:4 voltage step-up. Use of the center-tapped secondary allowed a 

dc offset voltage of 1.2 volts to be added to the differential signals to comply 

with the AD8346 input-biasing requirements. 

2. Add 1000-ohm termination resistors across each transformer output. 

3. Add a 1.2-volt dc bias source consisting of two silicon diodes forward-biased 

from the 3.3 volt supply voltage through a 2000-ohm current-limiting resistor. 

Connect to center-tap of both I- and Q-channel transformer secondary 

windings. 
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Figure 15. Recommended lab setup for SSB upconversion. (From Ref. [2].) 

 

For our lab experiment, a printed circuit board (PCB) for the step-up transformer 

was designed based on the schematic diagram shown in Figure 16. The PCB was 

fabricated by Electronic Controls Design Inc. and the material used is FR-4, a standard 

glass epoxy substrate. Figure 17 shows that PCB board diagram as well as the actual 

fabricated board of the step-up transformer with two subminiature version A (SMA) 

connectors for the quadrature output signals from AD9854EVAL, and four SMA 

connectors for the IBBN, IBBP, QBBN and QBBP input signals of the AD8346EVAL. 

 

Figure 16. Schematic diagram of center-tapped impedance step-up transformer. 
(After Ref. [2].) 
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 (a) Board routing diagram 

 

(b) Actual fabricated board 

Figure 17. Step-up transformer PCB. 

 

5. Expected Results 
Figure 18 shows a 200-MHz segment of the output spectrum of the AD8346 

centered around 1.05 GHz. The DDS “modulating” upper and lower sideband signals are 

seen 25 MHz away on either side of the LO at 1.04 GHz. A difference of –40 dB is 

indicated between the suppressed upper sideband (USB) and the favored lower sideband 

(LSB) amplitudes. The 40-dB differential equates to a power ratio of about ten-thousand 

to one. This level of sideband suppression is indicative of approximately 1 degree of 

input-signal phase mismatch. Note that the LSB frequency ([fc – fo] or [fLSB]) would be 

the transmitted radar frequency. 
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Figure 18. Spectrum analyzer output of the experimental setup in Figure 17. (From 
Ref. [2].) 

 

The measured result from the upconversion lab experiment is presented in Section 

A of Chapter III. 

 

D. SYNCHRONIZING MULTIPLE T/R MOUDLES 
In opportunistic phased array radar, the elements are located randomly across a 

huge area that may cover the entire length and width of a large ship. This may give rise to 

potentially many hundreds of T/R elements. Each T/R element would have to work in 

synchronous harmony with others to electronically steer the radar beam. This can be 

achieved by assigning a single DDS device (or channel) to each individual antenna (or 

T/R) element. The phase adjustments by the individual DDSs would be the mechanism 

for steering the beam. 

From a more technical point of view, the use of DDS, modulator and demodulator 

in each T/R element would require precise phase-synchronization of multiple synthesized 

RF output signals to one another. This requirement includes the synchronization of 1) 

dBm 
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Reference clock [REFCLK] signals and 2) Local oscillator [LO] signals to each of the 

potentially hundreds of T/R modules. 

The ultimate goal, which is also the main challenge, is to implement this 

synchronization of T/R modules “wirelessly,” since this is the key to realizing the 

aperstructure opportunistic array radar concept. The approach to synchronization of 

multiple DDS devices is discussed in this thesis and the synchronization of the LO signal 

is an on-going research topic that is addressing the synchronization techniques discussed 

here. 

 

E. SYNCHRONIZING MULTIPLE DDSs 

Phase synchronization of multiple synthesizers is a challenge for PLL and other 

traditional analog-based architectures. The AD9852/9854 and AD9850/9851 DDS 

devices from Analog Devices, with up to 14 bits of programmable phase-offset resolution 

(for AD9852/9854), provide the possibility for phase synchronization of multiple 

synthesized signals. The synchronization of multiple DDS devices can be accomplished 

as follows.  

There are two basic timing requirements to be met in order for successful 

synchronization of the DDS to occur. The first, and somewhat obvious, is a coincidental 

REF clock between all DDSs. Coincidental means that the REF clock pins of each DDS 

have REF clock timing coincident in time as illustrated in Figure 19. This is 

accomplished through proper circuit layout. 

The second timing requirement between all DDS devices is the coincidental 

transfer of the programmed input data to the DDS core. Performing this transfer is a key 

signal: the I/O update clock for the AD9854/9852. If the rising edge of this signal is sent 

synchronously to the multiple DDSs, along with proper set-up time relative to the REF 

clock, then synchronization can be achieved.  
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(a) Parallel distribution 

 

(b) Serial distribution 

Figure 19. The parallel method is the optimum REFCLK circuit layout for 
synchronizing DDSs. 

 

The wired distribution network shown in Figure 19 can be replaced with wireless 

channels. For example a modulated pulse train could be transmitted from REFCLK. An 

envelope detector at each DDS would extract the pulse train envelope, which is used for 

synchronization. Section C of Chapter III will provide more details on the technique(s) to 

achieving DDS synchronism. 

 

F. SUMMARY 
This chapter presented the method to synthesize a microwave frequency using 

present DDS technology and delved into the types of waveforms that can be generated by 

the DDS versus those expected from a typical radar transmit module. It proposed the 

necessary adaptation needed to satisfy radar applications such as surveillance and 

ballistic missile defense.  

This chapter also provided a detailed description on the recommended 

upconversion technique and discussed the theory, results and cause of the undesired 

products from the upconversion. It had a technical description of the DDS AD9854 and 

the AD8346 I/Q modulator and with a discussion of how they can be setup to form part 

of the wireless transmit module. 



26 

Finally, the potentially big challenge in an opportunistic radar was addressed: how 

to synchronize the potentially many T/R elements that could cover an area that is as huge 

as a destroyer ship? The key requirements that have to be satisfied in order to achieve 

successful synchronization were discussed. 
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III. EXPERIMENT AND CONCEPT ANALYSIS 

A. UPCONVERSION TO 2.4 GHz FREQUENCY 
Depending on the radar frequency band, it may be necessary to frequency shift the 

waveform spectrum up to a carrier. To demonstrate this process in the lab, a carrier 

frequency of 2.4 GHz is selected for convenience. 

The key objective of this experiment is to re-verify the previous finding reported 

in [5]. The first step is to re-verify using Matlab simulation to determine if the 36 dB 

suppression reported in [2] is indeed achievable by the proposed hardware setup 

previously discussed in Section C.4 of Chapter II. 

The approach to this experiment is divided into two sub tasks. The first is to 

analyze the theoretical (computed) waveforms at various stages from the input to the 

output. This is done by analyzing the hardware setup as presented in Figure 20 and later 

modified as shown in Figure 8 for the pulse waveform analysis. The theoretical data were 

computed using Matlab software; the computed data were later compared to the measured 

results to ensure that the results were in agreement with the analysis. 

The subsequent task was to set up the experiment as proposed by [5] with the 

AD9854, AD8346, a newly fabricated transformer PCB and other measuring instruments.  

 

 

Figure 20 Laboratory setup for upconversion. 
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The experiment was carried out mainly with an LO frequency of 2.4 GHz and a 

DDS operating frequency ranging from 1 MHz to 25 MHz. The raw results were then 

measured and collected. 

 

1. Matlab Calculation 
From the quadrature upconversion as shown in Figure 5, the waveforms at various 

stages throughout the upconversion could be analyzed using Matlab program. The Matlab 

software version used for the simulation is version v6.5.1. 

In the quadrature conversion setup, two mixers are driven with sine and cosine 

LOs (i.e. with 90 degree phase difference from one another). The mixers are then fed 

with sine and cosine baseband signals (filtered DDS output signals) to be symmetrically 

up-converted about the fixed LO, which produce the following equations: 

( ) ( )sin sinsignal o cI t tω ω=  (4) 

( ) ( )cos cossignal o cQ t tω ω=   (5) 

where   ωo is the angular frequency derived from 2πfo and ωc = 2πfc 

  fo is defined as the DDS operating frequency 

  fc is defined as the LO frequency 

The two mixer outputs are then summed internally to add in-phase components 

and reject quadrature components of the mixer outputs. This gives rise to the equation 

= + out signal signalV I Q   (6) 

or 

sin( ) sin( ) cos( ) cos( )out o c o cV t t t tω ω ω ω= +  (7) 

The end result (without additional filtering) is a suppressed-carrier, single sideband, at a 

frequency that is the difference between the LO and baseband signals (i.e. fc – fo).  

LO leakage - However, in practice, there will always be imperfection in the 

system that creates unwanted signals that appear at the output (and seen on a spectrum 

analyzer) that are not yet taken into account in this simple theoretical model. To be 

precise, in the model prediction we have to assume that there is going to be a slight 
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voltage offset, VOSBB in one of the baseband (I/Q) input circuits due to reasons described 

in Section C.2 of Chapter II. The above equation can be re-written to include this offset 

and the equation would then become 

(sin( ) ) sin( ) cos( ) cos( )out o OSBB c o cV t V t t tω ω ω ω= + +  (8) 

Simplifying further yields 

[ ]sin ( ) sin( )out o c OSBB cV t V tω ω ω= − +   (9) 

Now there is a component of the output signal at the LO frequency, namely VOSBB 

sin(ωc.t). This is commonly referred to as the LO feedthrough phenomenon. From the 

specification of AD8346 quadrature modulator, it is stated that the LO feedthrough is 

typically at –42 dBm. This is around –29 dBc (dB relative to the carrier) since the typical 

carrier output power for AD8346 is around –13 dBm. Including this figure into the 

equation gives VOSBB to be 

 
29

2010 0.0355OSBBV
−

= =  (10) 

The equation (9) then becomes 

sin[( ) ] 0.0355sin( )out c o cV t tω ω ω= − +  (11) 

If this unwanted LO feedthrough component is either at or very close to the 

desired output signal, RF filtering will not be possible. 

I/Q imbalance – Baseband I/Q amplitude imbalance and imperfect quadrature 

and amplitude imbalances at the outputs of the phase splitter create unwanted sideband 

interferers. Typically a 0.2 dB amplitude imbalance and 1° phase imbalance can be 

expected from phase splitter outputs that results in upper sideband amplitude of –36 dBc 

(note that the size of this component is proportional to the output power of the desired 

signal). 

The complete Matlab code for generating the following results can be found in 

APPENDIX A. The LO frequency (fc) to be used for the calculations is set at 2.4 GHz 

and the DDS operating frequency (fo) is set at 20 MHz. From the Matlab calculation, it 

can be seen that the opposing sideband can be suppressed significantly. Figure 21 shows 
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the results of the calculation. It seems that if the phase error is as reported in [2] to be 

around 1 degree of the signal, then it is very likely that the suppressed sideband should be 

able to achieve the reported 36 dBc suppression as compared to the desired LSB. 

 

 

Figure 21. Computed I/Q signal and output spectrum for fo = 20 MHz.  

I/Q imbalance 

LO FEEDTHROUGH
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sin(2πfct) sin(2πfct) cos(2πfct) cos(2πfct) 
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Now let the LO frequency (fc) to be set at 2.4 GHz and the DDS operating 

frequency (fo) chirped from 10 MHz to 120 MHz. Figure 22 shows the results of the 

calculation. It seems that the reported 36 dBc suppression is also achievable for wideband 

as well as LFM signals. 

 

 

Figure 22. Computed I/Q signal and output spectrum for 10 MHz – 120 MHz 
wideband LFM signal. 

 

2. Experiment Results 
The next step is to construct the proposed setup for the laboratory test. For the 

experiment, the AD9854EVAL evaluation software (revision 1.72) graphic user interface 

(GUI) was used with the DDS for generating the signals. Chirp mode was selected from 

the top of the screen and the start frequency (Frequency Tuning Word #1) was set to 1 

MHz. Next, the frequency step resolution, 0.01 MHz, is programmed into the 48-bit, 

Desired 
band 

Unwanted 
band 

sin(2πfct) sin(2πfLOt) cos(2πfct) cos(2πfLOt) 
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two’s complement Frequency Step Word. The external clock input was fed with a 75 

MHz frequency sinewave and the DDS’s clock multiplier was enabled to x4, hence 

generating an internal clock rate of 300 MHz. The amplitude was set to full amplitude. 

The AD8346EVAL board was fed with a 2.4 GHz LO sinewave frequency 

On the spectrum analyzer, it was observed that as the DDS frequency slowly 

chirps from 1 MHz to 20 MHz, the opposing sideband suppression lingers around -36 

dBc. Figure 23 shows the image as observed on the spectrum analyzer at DDS 

frequencies of 5 MHz and 10 MHz respectively. 

 

(a) 5 MHz operating frequency. (b) 10 MHz operating frequency. 

Figure 23. Spectrum analyzer laboratory results from the upconversion. 

 

The output spectrum remains roughly the same with approximately 36 dBc 

sideband suppression. However as the operating frequency is increased above 25 MHz, 

the desired signal strength starts to decrease and the magnitude of the unwanted sideband 

also increases (but only slightly). The output spectra for operating frequencies of 25 MHz 

and 40 MHz are shown in Figure 24. The results show a reduction in the suppression 

level to about ~30 dB and ~20 dB respectively. The suppression level will further 

decrease with increasing operating frequency and at around 65 MHz, the suppression will 

~36dB 

~26dB 
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LO FEEDTHROUGH 
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reduce to a mere 10 dB before it drops off as the DDS sweep towards its cutoff frequency 

(or maximum operating frequency) of 120 MHz.  

 

(a) 25 MHz operating frequency. (b) 40 MHz operating frequency. 

Figure 24. Beyond 25 MHz operating frequency the sideband suppression starts to 
reduce. 

 

The results show that good signal integrity was preserved on the LSB. At some 

instances (at lower operating frequencies < 10 MHz), signal-to-sideband suppression 

could be as great as 40 dB. The 40-dB differential equates to a power ratio of about ten-

thousand to one. However the available bandwidth with –36 dB suppression seems to be 

much narrower than computed. The theoretical available bandwidth should be the range 

at which the DDS can operate (i.e. 120 MHz) as shown in Figure 25(a). The measured 

bandwidth as shown in Figure 25(b), shows tapering effect as the operating frequency 

sweeps toward 120 MHz. This results in a lesser suppression level between the desired 

signal and the unwanted sideband. This is due mainly to the characteristic of the DDS.  

 

~20dB ~30dB 
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(a) Computed 10 – 120 MHz bandwidth. 

 
(b) Measured bandwidth. 

Figure 25. Instantaneous bandwidth. 

 

The amplitude of the DDS output spectrum are contained in a sinc (or sin[x]/x) 

envelope which is a result of the zero-order-hold associated with the output circuit of the 

DDS (typically a DAC). This sinc function inherent in the DAC causes amplitude 

variations at the DDS output as a function of frequency, this is especially noticeable for 

wide bandwidth signals as captured in Figure 25(b).  

In addition, since fundamentally a DDS is a sampled system, the output spectrum 

of a DDS system contains the operating frequency (fo) and its alias frequencies that 

stretch to infinity. Hence, the output is usually filtered with a low pass filter (LPF) which, 

in the case of AD9854, has a cutoff frequency (fcutoff) of 120 MHz. This causes the signal 

to attenuate more steeply as it approaches the cutoff frequency.  

Table 1 states the specification for the DAC dynamic output characteristic of the 

AD9854. What it shows is that for wideband applications, the further the signal is away 

from baseband, the lower the achievable dynamic range. 
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DAC DYNAMIC OUTPUT CHARACTERISTICS 

DAC Wideband SFDR AD9854ASQ Units 

1 MHz to 20 MHz AOUT 58 dBc 

20 MHz to 40 MHz AOUT 56 dBc 

40 MHz to 60 MHz AOUT 52 dBc 

60 MHz to 80 MHz AOUT 48 dBc 

80 MHz to 100 MHz AOUT 48 dBc 

100 MHz to 120 MHz AOUT 48 dBc 

DAC Narrowband SFDR   

10 MHz AOUT (±1 MHz) 83 dBc 

10 MHz AOUT (±250 kHz) 83 dBc 

10 MHz AOUT (±50 kHz) 91 dBc 

41 MHz AOUT (±1 MHz) 82 dBc 

41 MHz AOUT (±250 kHz) 84 dBc 

41 MHz AOUT (±50 kHz) 89 dBc 

119 MHz AOUT (±1 MHz) 71 dBc 

119 MHz AOUT (±250 kHz) 77 dBc 

119 MHz AOUT (±50 kHz) 83 dBc 

Table 1. AD9854 DAC dynamic output characteristics. (After Ref. [7].) 

 
3. Summary and Comments on Results 

a. Limited Bandwidth 
Much care had to be taken when trying to achieve the manufacturer’s 

specification with the experiment. The results were consistent with 36 dBc suppression 

from dc up to 25 MHz before starting to slowly decrease somewhat linearly prior to the 

complete drop off at 120 MHz.  

To maintain a high power ratio between the desired signal and unwanted 

sideband it might be necessary to limit the DDS operating bandwidth to about 25 MHz. 

For wider bandwidth application it maybe possible to use the latest AD9959 DDS which 

has an output frequency up to 200 MHz, instead of 120 MHz in the case of AD9854. The 
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higher output frequency should provide additional useable bandwidth while maintaining 

the high power ratio. 

b. Comments on the Upconversion 

Achieving the performance specified by the manufacturer has been 

difficult because the setup is very sensitive to phase changes. The initial attempt yielded 

only a 4-10 dB of suppression, which was later found to be due to the make-shift 

transformer board and its loose connectors. New boards were re-constructed using new 

transformers and better quality connectors. 

The new boards provided better results with sideband suppression up to      

–36 dBc as reported in the manufacturer’s specification [1]. Although, it was found that 

the value fluctuates significantly with the sweep operating frequency. The –36 dBc was 

achievable only at about 10 - 11 MHz operating frequency. Beyond that, the suppression 

reduced significantly. 

The cables used for connecting the transformer to the modulator board in 

the experiment were of the same length, and hence should not have introduced a 

significant phase error. Nonetheless they were replaced with new semirigid cables that 

were phase trimmed. With the new calibrated cables and the new transformer board, the 

results were more consistent and were able to provide the –36 dBc from 1 MHz up to 25 

MHz before decreasing somewhat linearly to –10 dB at around 70 MHz. 

As shown in Figure 23 the –36 dBc suppression is achieved more 

consistently using calibrated cables and properly constructed transformer boards. This 

contradicts the finding in [5]. Only 4-10 dB suppression was observed using make-shift 

transformer board and uncalibrated cables. The most probable cause of the finding in [5] 

could be due to the inadequacy of the transformer circuitry and the low quality cables 

used in the experiment.  

c. LO Leakage 
LO feedthrough amplitude (–26 dBc) is greater than the suppressed 

sideband in this setup. The LO feedthrough level is not affected by either the phase or 

amplitude of the DDS I and Q input signals.  
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LO feedthrough is reduced using active offset nulling techniques. This 

necessitates a dc-coupled connection between the DAC and modulator. The offset nulling 

can occur in the digital backend, or the output of the DAC. If done in the digital backend, 

an additional data processing step is required that might not be convenient and directly 

reduces dynamic range of the data unless resolution is increased. Alternatively, adding a 

small DC offset to the DAC output signal, prior to the quadrature modulator will 

compensate for the channel offsets and reduce the LO feedthrough. Typically at ambient 

temperature, LO leakage can be held below about –50 dBm over temperature on a 

modulator which generates a maximum output power of around 0 dBm. Whether this can 

be achieved with the AD8346 would have to be further investigated. 

It is important to note that since the LO feedthrough results from dc offset 

errors, nulling of LO leakage is independent of frequency to a first approximation. 

However as frequency increases, LO leakage that results from other internal parasitic 

circuit elements increases. Offset compensation will still reduce the overall feedthrough, 

but the nulling will now become more frequency dependent. 

 

B. FULFILLING THE PULSE RADAR REQUIREMENT 

1. Method of Generating Radar Pulses 
The RF pulses from the T/R module as shown in Figure 6 and Figure 8 are 

generated by simply turning on and off the output transmitted signal at the pulse 

repetition frequency (PRF), fp. The pulse period is Tp= 1/ fp and the duty cycle τ/Tp. From 

Fourier theory, the spectrum of a RF signal at frequency fc that is turned on and off 

abruptly is similar to the spectrum of a rectangular pulse train displaced in frequency by 

fc. Figure 26(c) shows the transmitted pulses obtained by multiplying the CW signal 

[Figure 26(a)] with a train of pulses [Figure 26(b)]. This relationship can also be 

expressed mathematically as 

( ) ( ) cos[ ( )])cs t A t t tω ϕ= +   (12) 

where   

A(t) is defined as the rectangular pulse train 
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 (a) Signal [cos(ωct)]. 

 

(b) Rectangular wave 

[A(t)]. 
(c) Output pulses [s(t)]. 

Figure 26. Transmitted pulses generated from switching a RF carrier with a train of 
rectangular pulses. 

 

2. Matlab Calculation on the Output Pulse Spectrum 
Applying the above Fourier theory in Matlab, the output pulse spectrum for the 

architecture proposed in Figure 8 was calculated. The CW waveform generated by the 

DDS and the up-converted to 2.4 GHz is put through a pulse switching mechanism. The 

output spectrum of a train of 5 pulses (m = 5) of width τ = 500 ns and a duty cycle of 20% 

was obtained by finding the Fast Fourier transform of the signal component. Figure 27 

shows the output spectrum of the CW versus the pulsed CW. 

The Matlab code for generating the waveform can be found in APPENDIX A. 

The Matlab graphs presented in Figure 28 show the impact on the pulse train spectrum as 

the pulse width is varied. The operating frequency of the DDS is fixed at 11 MHz and the 

LO frequency is 2.4 GHz. 
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Figure 27. CW (top) and pulsed (bottom) waveforms and spectra at the output 
of AD8346. 

 

3. Summary and Comments on Pulse Spectrum 

Figure 28(a) and (b) show the signal spectrum for a train of 5 pulses of width 100 

ns and a 20% duty cycle. Figure 28 (c) and (d) show the spectrum of a larger pulse of 

width 500 ns pulse and 20% duty cycle. The general idea here is that for shorter pulses 

the signal spectrum is generally broader than for longer pulses, and for longer pulses 

since the spectrum is narrower, it would therefore have lesser power requirement. 
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 (a) 100 ns pulses with 20% duty cycle.  (b) Signal Spectrum for 100 ns pulses. 

 
  (c) 500 ns pulses with 20% duty cycle.   (d) Signal Spectrum for 500 ns pulses. 

Figure 28. Signal pulse spectrum for various pulse width. 

 

The equation for determining maximum unambiguous range for a typical pulsed 

radar is given as 

 max 2
cR
PRF

=
×

 (13) 

and the equation for determining down range resolution for a particular pulse width is 

given as 

 
2
cR τ

∆ =  (14) 

where τ is the pulse width. 
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For an application such as a short range surveillance radar, which requires a 

detection around 100 km, the pulse width could be around 500 ns to achieve down range 

resolution of 150 m and pulse repetition frequency of 1 kHz for a typical 150 km 

maximum unambiguous detection range.  

For ballistic missile defense (BMD) which requires detection ranges out to 1000 

km and beyond, the required PRF would be much less than 1 kHz, usually around 100 Hz 

or so to allow a longer pulse width and enough energy on the target thousands of 

kilometers away so that detection could occur.  

 

C. SYNCHRONIZING MULTIPLE DDS 

This section explores the available means of synchronizing multiple DDSs and 

discusses the best means for use in the construction of the 2.4 GHz radar. 

Currently there are primarily two means of synchronizing multiple DDSs. The 

most common is the existing means of synchronizing the AD9854 DDS, which has been 

described by Analog Devices in their application note [10]. A newer method is used by 

the AD9958/59 from Analog Devices, which has built in synchronization function to 

connect and automatically synchronize multiple AD9958/59 DDSs. 

 The following is a brief description on the method proposed in reference [10] on 

how to synchronize two or more of AD9852/54 based devices. 

 

1. Synchronizing Multiple AD9852/54 DDS-Based Synthesizers 
The first requirement for successful synchronization of multiple 

AD9852/AD9854s is that there must be minimal phase error between the REFCLK inputs 

to all DDSs. Any difference in phase between the REFCLK edges will result in a 

proportional phase difference at the DDS outputs. Therefore, careful clock distributions  

must be maintained in the layout of the PCB as in Figure 19. 

Once a fast-edged and properly routed REFCLK signal is provided, the next 

timing requirement is the coincident transfer of the data into the DDS programming 

registers. The I/O UPDATE CLK transfers the contents of the I/O port buffer to the 
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programming registers where data becomes active. Synchronization of multiple DDSs 

requires that the EXT I/O UPDATE CLK’s rising edge occur simultaneously at all DDSs, 

just like the REFCLK. In addition, the rising edge of the EXT I/O UPDATE CLK must 

occur at the proper time with respect to REFCLK. 

Figure 29 presents one possible reference signal distribution design for the 

successful synchronization of multiple DDSs. This example shows how to place two 

DDSs into the same phase relationship. 

 

Figure 29. Application Circuit. (From Ref. [10].) 

 

In Figure 29, the D flip-flop enables the EXT I/O UPDATE CLK to be 

synchronous with the REFCLK and provides a setup time. Proper operation may require 

additional time delay in the REFCLK path. This delay depends on the CK–to–Q 

propagation time of the flip-flop.  

With proper care and operation, synchronization can be achieved among multiple 

DDSs.  
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2. Synchronizing Multiple AD9958/59 DDS-Based Synthesizers 

This section explores the second possible method of synchronizing multiple DDS 

using the latest DDS technology from Analog Devices. Released only recently, the 

AD9958/59 is designed to alleviate the design complexities typically involved in the 

synchronization of multiple DDS devices. The independent channels of the AD9959 and 

AD9958 are internally synchronized by a common reference clock. Programmable 

channel control allows for correction of imbalances in external signal paths due to analog 

processing, such as filtering, amplification, or PCB layout mismatches. If additional 

channels are required, the AD9959 and AD9958 allow daisy chaining of additional DDS 

chips. Reference [11] provides some insights to this automatic synchronizing feature and 

is briefly described in the following paragraphs. 

The AD9959 allows easy synchronization of multiple AD9959 devices. At power-

up, the phase of SYNC_CLK can be offset between multiple devices. To correct for the 

offset and align the SYNC_CLK edges, there are three methods (one automatic mode and 

two manual modes) of synchronizing SYNC_CLKs. These modes force the internal state 

machines of multiple devices to a known state, which aligns SYNC_CLKs. Any 

mismatch in REF_CLK phase between devices results in a corresponding phase 

mismatch on the SYNC_CLKs. 

The various DDS devices are configured as master and slaves, depending on their 

respective roles. Multiple-part synchronization can be achieved by a simple connection of 

the SYNC_OUT pin on the master device to the SYNC_IN input of the slave devices.  

In Figure 30, the sync pulse is sent from the master to the "Synchronization Delay 

Equalization" circuitry outside the AD9959/58 chip. The goal is to simultaneously 

distribute this pulse to the SYNC_IN pins of the slave devices. The slave devices sample 

the synchronization pulse from the master and compare the clock-generation, state-

machine current state against an "expected" value. If the slave device's clock-generation 

state machine compares properly with that value, the devices are synchronized. If the 

slave device's clock-generation state machine and the expected value are not identical, the 

device stalls the clock-generation state machine for one system-clock cycle. This 

procedure synchronizes the slave device(s) within three SYNC_CLK periods. 
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Figure 30. Typical configuration for synchronizing multiple AD9959/58 devices. 
(From Ref. [11].). 

 
3. Wireless Synchronization of Multiple DDSs 

In principle both synchronization techniques can be implemented in a wireless 

domain. The complexity offered in method 1 requires precise fabrication of the clock 

distribution circuit and accurate calibration of all paths. In terms of a wireless 

implementation effort, it would be significant since it requires knowledge of the 

propagation paths and the precise phase delay that exists from one T/R module to the 

next. Synchronization may be achieved by carefully measuring the propagation delays 

and implementing appropriate delay circuitry in each individual T/R module to 

compensate for these phase delays. This sounds reasonable if synchronization is only for 

a handful of devices, but for the opportunistic array, it may not be practical as the 

potential number of T/R modules range into the thousands. 
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In comparison, the second method uses SYNC pulse generated by a master device 

and distributed to a cluster of slave devices. Individual slave devices will compare their 

SYNC pulse to the master’s SYNC pulse and determine how much out-of-sync they are 

with the master and account for the phase differences that exist. Generally 

synchronization can be achieved within three SYNC pulses with this technique and it is 

extremely simple and effective even in a wireless domain.  

Section B.3 of Chapter IV recommends a method of using this synchronization 

technique to also synchronize the LO signal which is required for the AD8346 modulator 

and AD8347 demodulator. 
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IV. CONCLUSION AND RECOMMENDATION 

O divine art of subtlety and secrecy! Through you we learn to be invisible, 
through you inaudible and hence we can hold the enemy's fate in our 
hands. 

Sun Tzu 

A. CONCLUSION 

1. Summary  

Radar systems play an important role in modern military tactics and strategy. The 

radar system of today provides the high value picture to our forces, on which the 

commander relies for planning its every move. It however also provides the enemy 

commander valuable information on the movements of these spying units, simply 

because of the big and unstealthy antenna design that broadcast to the world of its own 

whereabouts. 

As technology continues to evolve, more complex radar designs and techniques 

will become available. The radar system of tomorrow will not be a system that simply 

detects targets; it will be to achieve the effect of “to see and not be seen”. As the famous 

military strategist Sun Tzu brings out; being invisible and inaudible, we hold the enemy’s 

fate in our hands. By providing the ability to fuse into a stealthy ship without altering its 

stealth characteristic, the Aperstructure concept provides the solution to achieving this 

effect. 

The key to realizing the opportunistic aperstructure radar concept is to achieve the 

ability to perform the operations of self-synchronize, synthesize, modulate and 

demodulate radar waveforms all in one module without any physical connections to the 

main radar controller. Of these operations the concepts for synchronization and radio 

frequency (RF) synthesis were explored in this thesis. 

 

2. Results and Discussion 

At present COTS DDS can only synthesize signals up to the frequency of 400 

MHz. For this reason DDS is routinely being incorporated with a phase-locked loop 
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(PLL) or up-converted with a mixer. In re-verifying the findings in [5], which concluded 

that the upconversion technique would not provide the 36 dBc image suppression, it was 

found that the conclusion arose from inadequate hardware. Using better quality boards 

and connectors, the laboratory results consistently showed that the 36 dBc was indeed 

achievable. Below 25MHz the high power ratio between the carrier and the image signal 

relaxes the filtering requirement and hence reduces the complexity of the transmit module 

design. 

Also, the methods of generating FMCW waveforms and pulsed waveforms from 

the digital transmit module were investigated. By itself, the DDS is capable of 

synthesizing various types of waveforms including FMCW. However to generate a 

pulsed waveform, there is a need to modify the setup to the architecture as proposed in 

Figure 8. The proposed setup is able to provide coherent pulsed waveforms that are 

beneficial for many radar applications.  

Subsequent investigation was centered on exploring the potential means of 

synchronizing multiple DDSs. This is a requirement for synchronizing the potentially 

hundreds of elements of the array that could cover the entire surface of a large ship. The 

existing means of synchronizing the AD9854 model of DDSs involves a delicate process 

of distributing the REFCLK signal to each individual DDS without incurring any phase 

differences between them. This is generally achievable if the number of DDSs to be 

synchronized does not become too large. However, for our application, the potential 

number of DDS that needs to be synchronized range into the hundreds and hence would 

be impractical if not unfeasible to implement. Fortunately Analog Devices has recently 

released a new range of DDS (AD9958-AD9959) that has built-in self-synchronization 

feature. This new method of synchronization provides the ability to connect these DDSs 

in a daisy chain that allows for large numbers of DDS to be synchronized.  

 

B. RECOMMENDATION 

1. Exploiting New Technologies 
With the new range of DDSs that has just been released by Analog Devices, it is 

prudent to explore their new capabilities and ascertain if they could be utilized in our 
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application. The following two new features in the latest range of DDS (AD9958-

AD9959) from Analog Devices are worth considering for further investigation. 

 

2. Improved Bandwidth 
Unlike AD9854 that synthesizes RF frequencies only up to 120 MHz, the newer 

range of DDSs (AD9958-59) can synthesize frequency up to 200 MHz. The extra 

frequency range could theoretically provide additional bandwidth that may be helpful for 

many wideband applications. As tested, although the AD9854 can synthesize up to 120 

MHz, it could only provide up to 25 MHz bandwidth if a high power ratio were to be 

maintained. With the 200 MHz AD9958-59, this bandwidth could be extended, which 

should accommodate larger bandwidth applications. 

Lab results from the manufacturer [12] have shown that the AD9959/58 device 

enables better than –60 dBc suppression of the redundant sideband. Figure 31 show the 

results of a 25 MHz, single tone that is upconverted to 975 MHz using quadrature signals 

from the AD9959. 

 

Figure 31. 25 MHz, single tone being upconverted to 975 MHz using quadrature 
modulation. (From [12].) 
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3. Wireless Synchronization of Multiple T/R Modules 

One of the most significant improvements of AD9959/58 over previous 

generations is the introduction of a multiple device synchronization feature. This new 

feature should be further explored as it provides a promising means not only to 

synchronize the multiple DDS devices but also applicable to synchronizing the LO signal 

which is required for the AD8346 modulator and AD8347 demodulator.  

The distribution of the LO (required by the modulator and demodulator) and the 

REFCLK (required for the DDS) signals can be combined into a single waveform. A 

pulse train could be transmitted from the centralized controller and the pulse train 

envelope detected and used for timing. The carrier can be extracted and used for the LO. 

Hardware for performing the synchronization must be included in each T/R module. The 

“beam tagging” method [14] has shown the capability to phase synchronize large number 

of elements. 

A combination of wired and wireless techniques could be applied to the 

opportunistic array. For example a cluster of elements can be slaved to neighboring 

“masters” by hardwired paths. The centralized controller would then only have to 

synchronize a smaller number of masters. 

 

4. Proposed Modification 
The latest AD9959 provides four independent channels, which theoretically 

should be configurable to support different applications simultaneously. This feature can 

eliminate the need for more synchronization that will be required for the pulse switching 

and generating mechanism. It might be worthwhile exploring the remaining DDS 

channels to drive the pulsing requirement. Since all channels are inherently synchronized 

because they share a common system clock, which effectively eliminates the need to 

synchronize multiple devices. With a single-chip solution, the temperature effects that 

exist between two separate devices are essentially eliminated as well. 

Figure 32 illustrates how an AD9959 can be hooked up to drive the pulsing 

requirement. However it should be noted that the rectangular wave generated by the 

AD9959 DDS to drive the pulse switching mechanism may not meet all pulse radar 
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requirements. Further investigation into the proposed setup would be necessary to 

determine the range of PRFs it can support and the speed at which the DDS can change 

the PRF frequency.  

 

 

Figure 32. Proposed circuit for generating a pulse train using the AD9959 DDS. 
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APPENDIX A. MATLAB SIMULATION  PROGRAMS 

This appendix contains several matlab programs that computes the expected signals and 
spectra for the upconversion experiments at various stages. 
 
%======================================================================== 
% This matlab program computes the I and Q signal as well as the output 
% spectrum from the AD9854 + AD8346 upconversion setup. 
 
clf 
clear 
DDS_fmhz = 20; % (MHz) DDS operating frequency  
LO_fghz = 2.4; % (GHz) Local Oscillator frequency 
phi=deg2rad(1); % Introduce a 1 degree phase error between I&Q signal 
aif=1.00; % amplitude of I signal from DDS 
aqf=10^(0.2/10); % amplitude of Q signal with a 0.2 dB imbalance compare to I signal 
V_OSBB=10^(-29/20); % Introduce a -29 dBc LO feedthrough offset voltage 
 
f_LO = LO_fghz*1e9;  
f_DDS = DDS_fmhz*1e6;  
w_DDS = 2.*pi.*f_DDS; % convert frequency to omega radian 
w_LO = 2.*pi.*f_LO; % convert frequency to omega radian 
t = 0:1/(20*f_LO):3e-6; % time 
 
Isignal=aif.*sin(w_DDS*t).*sin(w_LO*t); % compute I x LO(sine)signal         
Qsignal=aqf.*cos(w_DDS*t+phi).*cos(w_LO*t); % compute Q x LO(cosine)signal with phase    

% error of phi 
LO_leakage=V_OSBB.*sin(w_LO.*t); % simulated LO_feedthrough 
 
Vout=Isignal+Qsignal+LO_leakage; % Vout with LO feedthrough 
VoutSpec=fft(Vout,length(Vout)); % FFT spectrum Vout  
Voutnorm=abs(VoutSpec)/max(abs(VoutSpec)); % normalised FFT spectrum 
PoutdBm=20.*log10(Voutnorm); % Convert to dBm scale                         
P_dBm = PoutdBm-13%[dBm]; % Scale output peak to the max o/p power from  
 % AD8346 which is spec at -13 dBm 
RFout = awgn(P_dBm,-10); % add white gaussian noise 
 
% Convert time scale to frequency scale 
delf=1/max(t);  
Nf=length(VoutSpec)-1; 
f=[0:Nf]*delf; 
 
% Plot figures 
figure(1),subplot(221);                             % plot I signal vs time 
plot(t/1e-6,Isignal,'r'),xlabel('time, \musec'),ylabel('amplitude') ;  
title('Computed \it{I} signal'),axis([0,0.2,-1.1,1.1]); 
 
figure(1),subplot(222);                             % plot Q signal vs time 
plot(t/1e-6,Qsignal,'b'),xlabel('time, \musec'),ylabel('amplitude') ;  
title('Computed \it{Q} signal'),axis([0,0.2,-1.1,1.1]); 
 
figure(1),subplot(223);                             % plot Vout vs time 
plot(t/1e-9,Vout,'k'),xlabel('time, nsec'),ylabel('amplitude') ; 
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title('Computed V_o_u_t signal'),axis([0,10,-1.3,1.3]); 
 
figure(1),subplot(224);                             % plot Vout signal spectrum with dBm scale 
plot(f/1e9,RFout,'k');axis([LO_fghz-0.1,LO_fghz+0.1,-100,0]);grid on; 
xlabel('frequency, GHz'),ylabel('dBm') 
title('Expected V_o_u_t signal spectrum'); 
 
figure(2); 
plot(f/1e9,RFout,'k');axis([LO_fghz-0.1,LO_fghz+0.1,-100,0]);grid on;hold on;  
image(RFout);colormap bone; 
xlabel('frequency, GHz'),ylabel('dBm'); 
title('Expected V_o_u_t signal spectrum'); 
 

%======================================================================== 

 
%======================================================================== 
% This matlab program repeats the above, but now the I and Q signal from DDS will be LFM from 
10 MHz to 120 MHz. 

 
clf 
clear 
DDS_fmhz = 50 % (MHz) DDS operating frequency  
DDS_0 = 10e6 % (MHz) DDS starting frequency 
DDS_F = 120e6; % (MHz) DDS ending frequency 
LO_fghz = 2.4; % (GHz) Local Oscillator frequency 
aif=1.00; % amplitude of I signal from DDS 
aqf=10^(0.2/10); % amplitude of Q signal from DDS with a 0.2 dB imbalance compare to I 
signal 
V_OSBB=10^(-29/20); % Introduce a -42dBm or ~ -29 dBc LO feedthrough offset voltage 
 
f_LO = LO_fghz*1e9;        
f_DDS = DDS_fmhz*1e6;        
w_DDS = 2.*pi.*f_DDS; % convert frequency to omega radian 
w_LO = 2.*pi.*f_LO; % convert frequency to omega radian 
t = 0:1/(20*f_LO):1e-6; % time 
 
cos_f=chirp(t,DDS_0,1e-6,DDS_F,'linear',0); % Chirp DDS operating freq from 10MHz to 
  % 120MHz 
sin_f=chirp(t,DDS_0,1e-6,DDS_F,'linear',-91); % Choose 91 instead of 90 to introduce a 1 
  % degree phase error 
 
Isignal=aif.*sin_f.*sin(w_LO*t); % compute I x LO(sine)signal         
Qsignal=aqf.*cos_f.*cos(w_LO*t);   % compute Q x LO(cosine)signal with phase 
  % error of phi 
LO_leakage=V_OSBB.*sin(w_LO.*t); % simulated LO_feedthrough 
 
Vout=Isignal+Qsignal+LO_leakage;  % Vout with LO feedthrough 
VoutSpec=fft(Vout,length(Vout)); % FFT spectrum Vout  
Voutnorm=abs(VoutSpec)/max(abs(VoutSpec)); % normalised FFT spectrum 
PoutdBm=20.*log10(Voutnorm); % Convert to dBm scale                         
P_dBm = PoutdBm-13%[dBm]  % Scale output peak to the max output power  
  % from AD8346 which is spec at -13 dBm 



55 

RFout = awgn(P_dBm,-5);  % add white gaussian noise 
 
% Convert time scale to frequency scale 
delf=1/max(t);  
Nf=length(VoutSpec/2)-1; 
f=[0:Nf]*delf; 
 
% Plot figures 
figure(1),subplot(221);                             % plot I signal vs time 
plot(t/1e-6,Isignal,'r'),xlabel('time, \musec'),ylabel('amplitude') ;  
title('Computed \it{I} signal'),axis([0,0.2,-1.1,1.1]); 
 
figure(1),subplot(222);                             % plot Q signal vs time 
plot(t/1e-6,Qsignal,'b'),xlabel('time, \musec'),ylabel('amplitude') ;  
title('Computed \it{Q} signal'),axis([0,0.2,-1.1,1.1]); 
 
figure(1),subplot(223);                             % plot Vout vs time 
plot(t/1e-9,Vout,'k'),xlabel('time, nsec'),ylabel('amplitude') ; 
title('Computed V_o_u_t signal'),axis([0,10,-1.3,1.3]); 
 
figure(1),subplot(224);                             % plot Vout signal spectrum in dBm scale 
plot(f/1e9,RFout,'k');axis([LO_fghz-0.15,LO_fghz+0.15,-100,0]);grid on; 
xlabel('frequency, GHz'),ylabel('dBm') 
title('Expected V_o_u_t signal spectrum'); 

%======================================================================== 

 
 
 
%======================================================================== 
% This matlab program computes the I and Q signal as well as the output 
% spectrum from the AD9854 + AD8346 upconversion setup. 
 
clf 
clear 
DDS_fmhz = 20;           % (MHz) DDS operating frequency  
LO_fghz = 2.4;              % (GHz) Local Oscillator frequency 
phi=deg2rad(1);            % Introduce a 1 degree phase error between I&Q signal 
aif=1.00;                        % amplitude of I signal from DDS 
aqf=10^(0.2/10);          % amplitude of Q signal from DDS with a 0.2 dB imbalance compare to I 
signal 
V_OSBB=10^(-29/20);   % Introduce a -29 dBc LO feedthrough offset voltage 
 
f_LO = LO_fghz*1e9;        
f_DDS = DDS_fmhz*1e6;        
w_DDS = 2.*pi.*f_DDS;   % convert frequency to omega radian 
w_LO = 2.*pi.*f_LO;         % convert frequency to omega radian 
 
%======================================================================== 
% The following section computes the pulse train waveform and its spectrum  
%  
% compute the power in the transmitted spectrum 
 
Np=5;     % number of pulse widths in a period (T=Np*tau) 
tau=0.5e-6; % pulse width  
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N=5;     % number of pulses  
Nt=4096;   % number of time samples per pulse width 
T=Np*tau; 
%_____________________ compute plot the pulsed CW _______________ 
 dt=tau/Nt;       
  it=T/dt; 
  k=0; sum=0; 
   for n=1:N 
    for i=1:it 
      k=k+1; 
      to=(i-1)*dt; 
      t(k)=to+(n-1)*T; 
        Isignal=aif.*sin(w_DDS*to).*sin(w_LO*to);             % compute I x LO(sine)signal         
        Qsignal=aqf.*cos(w_DDS*to+phi).*cos(w_LO*to); % compute Q x LO(cosine)signal with 
phase error of phi 
        LO_leakage=V_OSBB.*sin(w_LO.*to);                     % simulated LO_feedthrough 
 
      S(k)=0; 
       if to <= tau 
        S(k)=Isignal+Qsignal+LO_leakage;  
sum=sum+S(k); 
        end  
    end 
 end 
Psig=(sum*dt)^2;  % power in the signal for normalization 
 
%_________________ compute the Fourier transform _________________ 
% there are now k time samples; increase it by a factor of NN 
% before taking the fft (by zero packing) 
NN=4;   
S(k+1:NN*k)=zeros(1,(NN-1)*k); 
t(1:NN*k)=dt*[0:NN*k-1]; 
A=fft(S,length(S)); Amax=max(abs(A)); 
figure(1) 
subplot(221) 
plot(t/1e-6,S,'b'),xlabel('time (\musec)'),ylabel('amplitude') 
title(['pulsed CW, frequency, with {\it\tau} = ',num2str(tau/1e-9),' ns']) 
grid,axis([0,max(t)/5e-6+1,-1.1,1.1]) 
F=fftshift(A); 
delf=1/max(t); Fmax=max(abs(F)); 
Nf=length(F)/2-1; 
f=[0:Nf]*delf;       % frequencies 
Fp=F(length(F)/2+1:length(F)); 
Fn=abs(Fp)/Fmax;       % normalized spectrum 
PdBm=20.*log10(Fn)-13; % conver to dBm scale 
subplot(222) 
plot(f/1e9,PdBm,'b');axis([LO_fghz-DDS_fmhz/1e3-0.05,LO_fghz+DDS_fmhz/1e3+0.05,-100,1]) 
xlabel('frequency, GHz'),ylabel(‘dBm') 
title('spectrum of pulsed CW'); grid on; 
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APPENDIX B. SURVEY ON NEW COMMERCIAL DDS 

The key manufacturer and global leader in high performance semiconductors such 

as direct digital synthesizers (DDS) is Analog Devices Inc. (NYSE: ADI). The company 

had developed an extensive range of DDS and is continuing to introduce new families of 

direct digital synthesizers packed with more features and capabilities to meet modern 

demand and applications.  

This survey summarizes the new features and capabilities arising from the 

development in the direct digital synthesizer that might be useful for future work. The 

following information are taken or quoted from http://www.analog.com. 

 

Complete DDS solution (AD9852-AD9854) 
The AD9854 digital synthesizer is a highly integrated device that uses advanced 

DDS technology, coupled with (2) internal high-speed, high performance quadrature D/A 

converters and comparator to form a digitally-programmable I & Q synthesizer function.  

When referenced to an accurate clock source, the AD9854 generates a highly 

stable, frequency, phase and amplitude programmable sine and cosine outputs that can be 

used as an agile L.O. in communications, radar, and many other applications. 

The AD9854's innovative high-speed DDS core provides a 48-bit frequency 

tuning word, which results in an output tuning resolution of 1 micro-Hertz, for a 300 

MHz internal reference clock input. The AD9854's circuit architecture allows the 

generation of simultaneous quadrature outputs at frequencies up to 150 MHz, which can 

be digitally tuned at a rate of up to 100 million new frequencies per second. The 

(externally filtered) sine wave output can be converted to a square wave by the internal 

comparator for agile clock generator applications. The device provides 14-bits of 

digitally-controlled phase modulation and single-pin PSK. The on-board 12-bit I & Q 

DACs, coupled with the innovative DDS architecture, provide excellent wideband and 

narrowband output SFDR. The Q-DAC can also be configured as a user-programmable 

control DAC if the quadrature function is not desired. When configured with the onboard 

comparator, the 12-bit control DAC facilitates pulse-width modulation (PWM) and static 
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duty cycle control, in the highspeed clock generator application. Two 12-bit digital 

multipliers permit programmable amplitude modulation, shaped on-off keying and 

precise amp-litude control of the quadrature outputs. The AD9854’s programmable 4x - 

20x REFCLK Multiplier circuit generates the 300 MHz clock internally from a lower 

frequency external reference clock. This saves the user the expense and difficulty of 

implementing a 300 MHz clock source. Direct 300 MHz clocking is also accommodated 

with either single-ended or differential inputs. Single-pin conventional FSK and the 

enhanced spectral qualities of “ramped” FSK are supported. The AD9854 uses advanced 

.35 micron CMOS technology to provide this high level of functionality on a single +3.3 

V supply 

 

GigaHertz complete DDS (AD9858) [Sep/2002] 

The AD9858 DDS is a flexible device that consists of a power-efficient DDS 

core, a 32-bit phase accumulator, 14-bit phase offset adjustment, and a 1 GSPS 10-bit 

DAC. It features an analog mixer capable of operating at 2 GHz, a phase-frequency 

detector (PDF), and a programmable charge pump (CP) with advanced fast-lock 

capability. These RF building blocks can be used for various frequency synthesis loops or 

as needed in system design. 

The new DDS can directly generate frequencies up to 400+ MHz when driven at 1 

GHz internal clock speed. The reference clock can be derived from an external clock 

source of up to 2 GHz by using the on-chip divide-by-2 feature. The on-chip mixer and 

PFD/CP make possible a variety of synthesizer configurations capable of generating 

frequencies in the 1-2 GHz range or higher. 

The AD9858 is easily configured by writing data to its on-chip digital registers 

that control all operations of the device. In addition, it can be programmed to operate in 

single-tone mode or in a frequency-sweeping mode. To reduce power consumption, there 

is also a programmable full-sleep mode. 
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Low-Power (AD9951-AD9954) [June/2003] 

These chips deliver a 400 MHz clock speed at one-tenth the power consumption 

of previous solutions. This now enables designers to use DDS for fast frequency hopping 

at higher output frequencies in more power-sensitive applications. Typical applications 

include satellite communications, broadband networking, radar, test and measurement, 

and instrumentation. 

The AD9954 devices can clock at 400 MSPS and synthesize frequencies of up to 

160 MHz while dissipating less than 200 mW of power. Previous DDS chips of 

comparable resolution could only synthesize frequencies up to 120 MHz and dissipated 2 

watts of power. The lower power dissipation now allows designers to use multiple chips 

on a single PCB with less concern for thermal issues. Additional features of the family 

include an integrated 14-bit digital-to-analog converter, on-chip random access memory 

(RAM), phase offset and amplitude control, and multi-chip synchronization. 

The new DDS family comprises four new 14-bit devices with various added 

benefits. The feature sets were selected to allow designers to purchase only the 

functionality needed for the desired application. The four family members and added 

functionality are the following: 

AD9951: Basic DDS with on-board 14-bit DAC 
AD9952: with high-speed comparator  
AD9953: with RAM (allows nonlinear phase / frequency sweeping)  
AD9954: with high-speed comparator, RAM, and automatic linear frequency 

sweep 

 

Multi-channel (AD9958 and AD9959) [July/2005] 
ADI’s new four-channel AD9959 and two-channel AD9958 deliver greater 

control to correct imbalances between multiple signals. For space-constrained systems, 

the AD9958 and AD9959 simplify the design process by integrating multiple DDS 

channels on a single chip, eliminating the need for several single- channel DDS chips and 

external circuitry and offering dramatic board space reduction of up to 75 percent over 

traditional solutions. 
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The AD9959 and AD9958 are optimized for applications that require complex 

high speed synthesis up to 200 MHz, including phased-array radar/sonar systems, 

automatic test equipment, medical imaging and optical communications systems. 

 

Precise Synchronization, Low Power 
In order to alleviate the design complexities typically involved in the 

synchronization of multiple DDS devices, the independent channels of the AD9959 and 

AD9958 are internally synchronized by a common reference clock. Programmable 

channel control allows for correction of imbalances in external signal paths due to analog 

processing, such as filtering, amplification, or PCB layout mismatches. If additional 

channels are required, the AD9959 and AD9958 allow daisy chaining of additional DDS 

chips. The devices also offer extremely low power consumption of less than 165 mW per 

channel. 

 

Independent Channel Phase, Frequency, and Amplitude Control 
Each channel of the four-channel AD9959 and the two-channel AD9958 

incorporates a high speed 10-bit DAC with excellent wideband and narrowband SFDR 

(spurious free dynamic range). Each fully independent programmable channel provides 

14-bits of phase offset tuning, 32-bit frequency resolution and 10-bit amplitude control. 

The device also supports direct or linear sweep modulation, while achieving channel 

isolation of greater than 60 dB. The integrated 32-bit frequency tuning word enables each 

channel to be programmed to resolutions of 116 mHz or less with a sampling clock of up 

to 500 MSPS. 
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Part# Master 
fclk  

Resolution 
(Bits) 

Max 
Output 

Freq 

Power 
Dissipated 

(max) 
On-Board 

LPF 
I & Q 

Output 

AD9854 300MHz 12 120MHz 3W Yes 
(120MHz) 

Single 
Channel 

Differential 

AD9954 400MHz 14 150MHz 250mW 
(TBC) 

Yes  
(TBC) 

Single 
Channel 

Differential 

AD9959 500MHz 10 200MHz 680mW Yes 
(200MHz) 

4 Channels 
Differential 

and/or  
Single 
ended 

AD9858 1000MHz 10 400MHz 2.5W 

Yes 
(200MHz 

and 
300MHz) 

Single 
Channel 

Differential 

 

Table 2. DDS comparison. 
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